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SOLUTION TO FINAL EXAMINATION

Problem 1. Problem 2.
At the instant that the probe barely grazes the
a planet, it will have radius R and velocity vy

We consider this head-on collision in the center
of mass. The center of mass velocity is

M
Vi=V

= =~V
M +m

Using this approximation, in the C.M. the fly
approaches the locomotive with speed V. Since
the collision is elastic, it bounces back with the

directed tangentially to the planet.
momentum conservation requires

Angular

mugb = muy R
b
Vf =0
f °R
Substituting for vy in the equation for energy
conservation, we obtain

same speed. Transforming back to the lab, the 1 1 GM,m
. —mu2 = —mv? — L
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In each collision, the momentum 2mV that is b? _ 2GM,
gained by the fly is lost by the locomotive: R2 o viR
AP = MAV = —2mV b— R |1 2G2Mp
AV .m volt
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In a time interval At, the volume swept out by  problem 3.

the front of the train is AV At; this volume con-
tains VAV At flies. So, for N AV At collisions,
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where Vj is the velocity at ¢ = 0. vc = % gR



Fo = —2m(w x v)

w is north, and —v is east; north x east is down.
This is the direction in which the ball misses.
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(We ignore the centrifugal force on the ball, be-
cause it is the same on the colony as on earth,
and the pitcher already compensates for it.) As a
sanity check, if D =20 m and v = 40 m/sec (ap-
propriate to baseball), and R = 1000 m, we ob-
tain d ~ 1 m. Indeed d is much smaller than D.
Nevertheless, from the standpoint of the pitcher,
the Coriolis force has a big effect on his control.

Problem 4.
The equation of motion for x(t) is
mi = —k(z — x,) = —mwi(z — )
&= —wir + wimAsinwt

#+wir = kAsinwt

a.

try z,(t) = Bsinwt
(—w? + w})Bsinwt = kAsinwt
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b.

Because an infinite force from the spring would

be required otherwise, @((0) = 0 as well as
x0(0) = 0. The general solution to the homoge-
neous equation of motion (4 = 0) is

xp(t) = C coswyt + D sin wpt

The general solution to the full equation is ob-
tained by adding x, to x,. Applying initial

conditions,
kAsin wt
xo(t) = QS;HMZ + C'coswpt + D sin wgt
wi —w
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Problem 5.
a.

b.
&(z,t) = sin kaR (& exp (—iwt))
sinkL =0
kL=nm, n=1,2,...
w=ck
w P 7T_c
L
c.
§(z,t) = &(z + L, t)
d.



&(x,t) = §R(§0 exp (i(kx — wt)))
exp(tkx) = exp(ik(xz + L)

1 =exp(ikL)
kL =2nm, n=1,2,...
w=ck
2me
wp = —-
wy = 2w

Problem 6.

a.
Per unit mass of fluid, the force f is

M
f:—f'G
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We seek a function ®(r) such that
Vo =f

or equivalently, using spherical symmetry,

<I>:—/frd7‘

GM
r

Clearly
®(r) =

satisfies either of these conditions.

b.
Since the flow is steady, we can use Bernoulli’s
equation (either along a streamline at constant

(0, ¢), or, since the flow is irrotational, anywhere
outside the black hole):

1
§pv2 + p+ p® = constant

Only the first and third terms are not con-
stant, so they must have the same r dependence.
Therefore v2 and ® have the same r dependence.
So

’Uocrfl/g

c.
In steady flow there can be no buildup of mass
density p. Therefore the mass flow

pv (kg/m*sec) x 4mr? (m?)

through a spherical surface of radius r must be
independent of r. So, using the result of part

(a),

pPU X r2
p X P32
More formally, but equally acceptably, one can
reach the same conclusion by applying the con-

tinuity equation

op B
E%—V-(pv)—o

and using the fact that for steady flow the first
term vanishes.



